Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
ACS Synth Biol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695987

ABSTRACT

Enzymatic cascades have become a green and sustainable approach for the synthesis of valuable chemicals and pharmaceuticals. Using sequential enzymes to construct a multienzyme complex is an effective way to enhance the overall performance of biosynthetic routes. Here we report the design of an efficient in vitro hybrid biocatalytic system by assembling three enzymes that can convert styrene to (S)-1-phenyl-1,2-ethanediol. Specifically, we prepared the three enzymes in different ways, which were cell surface-displayed, purified, and cell-free expressed. To assemble them, we fused two orthogonal peptide-protein pairs (i.e., SpyTag/SpyCatcher and SnoopTag/SnoopCatcher) to the three enzymes, allowing their spatial organization by covalent assembly. By doing this, we constructed a multienzyme complex, which could enhance the production of (S)-1-phenyl-1,2-ethanediol by 3 times compared to the free-floating enzyme system without assembly. After optimization of the reaction system, the final product yield reached 234.6 µM with a substrate conversion rate of 46.9% (based on 0.5 mM styrene). Taken together, our strategy integrates the merits of advanced biochemical engineering techniques, including cellular surface display, spatial enzyme organization, and cell-free expression, which offers a new solution for chemical biosynthesis by enzymatic cascade biotransformation. We, therefore, anticipate that our approach will hold great potential for designing and constructing highly efficient systems to synthesize chemicals of agricultural, industrial, and pharmaceutical significance.

2.
Biotechnol J ; 19(4): e2400114, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38622790

ABSTRACT

Molecular cloning facilitates the assembly of heterologous DNA fragments with vectors, resulting in the generation of plasmids that can steadily replicate in host cells. To efficiently and accurately screen out the expected plasmid candidates, various methods, such as blue-white screening, have been developed for visualization. However, these methods typically require additional genetic manipulations and costs. To simplify the process of visualized molecular cloning, here we report Rainbow Screening, a method that combines Gibson Assembly with chromoproteins to distinguish Escherichia coli (E. coli) colonies by naked eyes, eliminating the need for additional genetic manipulations or costs. To illustrate the design, we select both E. coli 16s rRNA and sfGFP expression module as two inserted fragments. Using Rainbow Screening, false positive colonies can be easily distinguished on LB-agar plates. Moreover, both the assembly efficiency and the construct accuracy can exceed 80%. We anticipate that Rainbow Screening will enrich the molecular cloning methodology and expand the application of chromoproteins in biotechnology and synthetic biology.


Subject(s)
DNA , Escherichia coli , Escherichia coli/genetics , RNA, Ribosomal, 16S , Cloning, Molecular , Plasmids , DNA/genetics , Genetic Vectors
3.
Bioorg Med Chem Lett ; 101: 129653, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38360420

ABSTRACT

Gene-encoded aldehyde tag technology has been widely utilized in protein bioorthogonal chemistry and biotechnological application. Herein, we report utilization of the promiscuous rSAM cyclophane synthase SjiB involved in triceptide biosynthesis as a dedicated and highly efficient formylglycine synthase. The new aldehyde tag sequence in this system, YQSSI, is biosynthetically orthogonal to the known aldehyde tag (C/S)x(P/A)xR. The potential use of SjiB/YQSSI aldehyde tag system was further validated in fluorescent labelling of model proteins.


Subject(s)
Aldehydes , Cyclophanes , Proteins
4.
Biotechnol J ; 19(1): e2300327, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37800393

ABSTRACT

Escherichia coli Nissle 1917 (EcN) is a probiotic microbe that has the potential to be developed as a promising chassis for synthetic biology applications. However, the molecular tools and techniques for utilizing EcN remain to be further explored. To address this opportunity, the EcN-based toolbox was systematically expanded, enabling EcN as a powerful platform for more applications. First, two EcN cryptic plasmids and other compatible plasmids were genetically engineered to enrich the manipulable plasmid toolbox for multiple gene coexpression. Next, two EcN-based technologies were developed, including the conjugation strategy for DNA transfer, and quantification of protein expression capability. Finally, the EcN-based applications were further expanded by developing EcN native integrase-mediated genetic engineering and establishing an in vitro cell-free protein synthesis (CFPS) system. Overall, this study expanded the toolbox for manipulating and making full use of EcN as a commonly used probiotic chassis, providing several simplified, dependable, and predictable strategies for researchers working in synthetic biology fields.


Subject(s)
Escherichia coli , Probiotics , Escherichia coli/genetics , Escherichia coli/metabolism , Synthetic Biology , Genetic Engineering/methods , Plasmids/genetics
5.
Phytochemistry ; 217: 113918, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37952710

ABSTRACT

Four undescribed sesquiterpene-shikimates (1-4), eight undescribed monoterpene-shikimates (5-12), together with two known ones were isolated and identified from the 95% ethanol extract of the plant endophytic fungus Phyllosticta capitalensis cultured in rice medium. Capitalensis A (1) was identified as the first sesquiterpene-shikimate-conjugated spirocyclic meroterpenoid degradation product, while capitalensis B (2) is a sesquiterpene-shikimate-conjugated spirocyclic meroterpenoid with a unique D-ring formed by a C-2-O-C-9' connection. The structures of these previously undescribed compounds were elucidated by multiple techniques, including IR, HR-ESI-MS, and NMR analysis. Furthermore, their absolute configurations were established through the comprehensive approach that involved the calculations of ECD spectra, optical rotation values, and single-crystal X-ray analysis. Moreover, the anti-inflammatory activity of all isolated compounds was evaluated using a lipopolysaccharide (LPS)-induced inflammation model in BV2 microglial cells. Meanwhile, these compounds exhibited activity in inhibiting NO production. Four compounds, capitalensis C (3), capitalensis D (4), 15-hydroxyl tricycloalternarene 5b (13) and guignarenone A (14) showed strong inhibitory effects with IC50 values of 21.6 ± 1.33, 12.2 ± 1.08, 18.6 ± 1.27, and 15.8 ± 1.20 µM, respectively. In addition, the structure-activity relationship of the anti-inflammatory activity of the compounds was discussed.


Subject(s)
Sesquiterpenes , Shikimic Acid , Molecular Structure , Anti-Inflammatory Agents/chemistry , Sesquiterpenes/chemistry
6.
Angew Chem Int Ed Engl ; 62(52): e202312906, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37966024

ABSTRACT

In this study, we addressed the limitations of conventional enzyme-polymer-conjugate-based Pickering emulsions for interfacial biocatalysis, which traditionally suffer from nonspecific and uncontrollable conjugation positions that can impede catalytic performance. By introducing a non-canonical amino acid (ncAA) at a specific site on target enzymes, we enabled precise polymer-enzyme conjugation. These engineered conjugates then acted as biocatalytically active emulsifiers to stabilize Pickering emulsions, while encapsulating a cell-free protein synthesis (CFPS) system in the aqueous phase for targeted enzyme expression. The resulting cascade reaction system leveraged enzymes expressed in the aqueous phase and on the emulsion interface for optimized chemical biosynthesis. The use of the cell-free system eliminated the need for intact whole cells or purified enzymes, representing a significant advancement in biocatalysis. Remarkably, the integration of Pickering emulsion, precise enzyme-polymer conjugation, and CFPS resulted in a fivefold enhancement in catalytic performance as compared to traditional single-phase reactions. Therefore, our approach harnesses the combined strengths of advanced biochemical engineering techniques, offering an efficient and practical solution for the synthesis of value-added chemicals in various biocatalysis and biotransformation applications.


Subject(s)
Polymers , Emulsions/chemistry , Biocatalysis , Catalysis , Biotransformation
7.
Synth Syst Biotechnol ; 8(4): 610-617, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37781172

ABSTRACT

Plant-originated natural products are important drug sources. However, total biosynthesis of these compounds is often not achievable due to their uncharacterized, lengthy biosynthetic pathways. In nature, phenethylisoquinoline alkaloids (PIAs) such as colchicine are biosynthesized via a common precursor 6,7-dihydroxy-1-(4-hydroxyphenylethyl)-1,2,3,4-tetrahydroisoquinoline (i.e., phenethylisoquinoline scaffold, PIAS). PIAS is naturally synthesized in plants by using two upstream substrates (l-phenylalanine and l-tyrosine) catalyzed by eight enzymes. To shorten this native pathway, here we designed an artificial route to synthesize PIAS with two enzymatic steps from two alternative substrates of 3-(4-hydroxyphenyl) propanol (4-HPP) and dopamine. In the two-step bioconversion, an alcohol dehydrogenase selected from yeast (i.e., ADH7) was able to oxidize its non-native alcohol substrate 4-HPP to form the corresponding aldehyde product, which was then condensed with dopamine by the (S)-norcoclaurine synthase (NCS) to synthesize PIAS. After optimization, the final enzymatic reaction system was successfully scaled up by 200 times from 50 µL to 10 mL, generating 5.4 mM of PIAS. We envision that this study will provide an easy and sustainable approach to produce PIAS and thus lay the foundation for large-scale production of PIAS-derived natural products.

8.
Adv Mater ; 35(42): e2305583, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37498452

ABSTRACT

Living materials represent a new frontier in functional material design, integrating synthetic biology tools to endow materials with programmable, dynamic, and life-like characteristics. However, a major challenge in creating living materials is balancing the tradeoff between structural stability, mechanical performance, and functional programmability. To address this challenge, a sheath-core living hydrogel fiber platform that synergistically integrates living bacteria with hydrogel fibers to achieve both functional diversity and structural and mechanical robustness is proposed. In the design, microfluidic spinning is used to produce hydrogel fiber, which offers advantages in both structural and functional designability due to their hierarchical porous architectures that can be tailored and their mechanical performance that can be enhanced through a variety of post-processing approaches. By introducing living bacteria, the platform is endowed with programmable functionality and life-like capabilities. This work reconstructs the genetic circuits of living bacteria to express chromoproteins and fluorescent proteins as two prototypes that enable the coloration of living fibers and sensing water pollutants by monitoring the amount of fluorescent protein expressed. Altogether, this study establishes a structure-property-function optimized living hydrogel fiber platform, providing a new tool for accelerating the practical applications of the emerging living material systems.


Subject(s)
Bioengineering , Hydrogels , Hydrogels/chemistry , Bacteria
9.
J Agric Food Chem ; 71(22): 8551-8557, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37216486

ABSTRACT

Cell-free expression systems have emerged as a potent and promising platform for the biosynthesis of chemicals by reconstituting in vitro expressed enzymes. Here, we report cell-free biosynthesis of cinnamyl alcohol (cinOH) with enhanced productivity by using the Plackett-Burman experimental design for multifactor optimization. Initially, four enzymes were individually expressed in vitro and directly mixed to reconstitute a biosynthetic route for the synthesis of cinOH. Then, the Plackett-Burman experimental design was used to screen multiple reaction factors and found three crucial parameters (i.e., reaction temperature, reaction volume, and carboxylic acid reductase) for the cinOH production. With the optimum reaction conditions, approximately 300 µM of cinOH was synthesized after 10 h of cell-free biosynthesis. Extending the production time to 24 h also increased the production to a maximum yield of 807 µM, which is nearly 10 times higher than the initial yield without optimization. This study demonstrates that cell-free biosynthesis can be combined with other powerful optimization methodologies such as the Plackett-Burman experimental design for enhanced production of valuable chemicals.


Subject(s)
Cell-Free System , Propanols
10.
ACS Synth Biol ; 12(4): 1349-1357, 2023 04 21.
Article in English | MEDLINE | ID: mdl-37040607

ABSTRACT

Crude extract-based cell-free expression systems have been used to produce natural products by reconstitution of their biosynthetic pathways in vitro. However, the chemical scope of cell-free synthesized natural compounds is still limited, which is partially due to the length of biosynthetic gene clusters. To expand the product scope, here, we report cell-free biosynthesis of several lysine-derived unnatural amino acids with functional moieties such as chloro, alkene, and alkyne groups. Specifically, five related enzymes (i.e., halogenase, oxidase, lyase, ligase, and hydroxylase) involved in ß-ethynylserine biosynthesis are selected for cell-free expression. These enzymes can be expressed in single, in pairs, or in trios to synthesize different compounds, including, for instance, 4-Cl-l-lysine, 4-Cl-allyl-l-glycine, and l-propargylglycine. The final product of γ-l-glutamyl-l-ß-ethynylserine (a dipeptide with an alkyne group) can also be synthesized by cell-free expression of the full biosynthetic pathway (i.e., five enzymes). Our results demonstrate the flexibility of cell-free systems, enabling easy regulation and rational optimization for target compound formation. Overall, this work expands not only the type of enzymes (e.g., halogenase) but also the scope of natural products (e.g., terminal-alkyne amino acid) that can be rapidly produced in cell-free systems. With the development of cell-free biotechnology, we envision that cell-free strategies will create a new frontier for natural product biosynthesis.


Subject(s)
Amino Acids , Biological Products , Alkenes , Alkynes/metabolism , Amino Acids/chemistry , Lysine/metabolism , Cell-Free System
11.
Adv Sci (Weinh) ; 10(14): e2207008, 2023 05.
Article in English | MEDLINE | ID: mdl-36938858

ABSTRACT

Erythritol, one of the natural sugar alcohols, is widely used as a sugar substitute sweetener in food industries. Humans themselves are not able to catabolize erythritol and their gut microbes lack related catabolic pathways either to metabolize erythritol. Here, Escherichia coli (E. coli) is engineered to utilize erythritol as sole carbon source aiming for defined applications. First, the erythritol metabolic gene cluster is isolated and the erythritol-binding transcriptional repressor and its DNA-binding site are experimentally characterized. Transcriptome analysis suggests that carbohydrate metabolism-related genes in the engineered E. coli are overall upregulated. In particular, the enzymes of transaldolase (talA and talB) and transketolase (tktA and tktB) are notably overexpressed (e.g., the expression of tktB is improved by nearly sixfold). By overexpression of the four genes, cell growth can be increased as high as three times compared to the cell cultivation without overexpression. Finally, engineered E. coli strains can be used as a living detector to distinguish erythritol-containing soda soft drinks and can grow in the simulated intestinal fluid supplemented with erythritol. This work is expected to inspire the engineering of more hosts to respond and utilize erythritol for broad applications in metabolic engineering, synthetic biology, and biomedical engineering.


Subject(s)
Erythritol , Escherichia coli , Humans , Escherichia coli/genetics , Escherichia coli/metabolism , Erythritol/metabolism , Carbon , Transcription Factors/genetics , Metabolic Engineering
12.
Biotechnol Bioeng ; 120(3): 793-802, 2023 03.
Article in English | MEDLINE | ID: mdl-36510694

ABSTRACT

Nonribosomal peptides (NRPs) are a large family of secondary metabolites with notable bioactivities, which distribute widely in natural resources across microbes and plants. To obtain these molecules, heterologous production of NRPs in robust surrogate hosts like Escherichia coli represent a feasible approach. However, reconstitution of the full biosynthetic pathway in a host often leads to low productivity, which is at least in part due to the low efficiency of enzyme interaction in vivo except for the well-known reasons of metabolic burden (e.g., expression of large NRP synthetases-NRPSs with molecular weights of >100 kDa) and cellular toxicity on host cells. To enhance the catalytic efficiency of large NRPSs in vivo, here we propose to staple NRPS enzymes by using short peptide/protein pairs (e.g., SpyTag/SpyCatcher) for enhanced NRP production. We achieve this goal by introducing a stapled NRPS system for the biosynthesis of the antibiotic NRP valinomycin in E. coli. The results indicate that stapled valinomycin synthetase (Vlm1 and Vlm2) enables higher product accumulation than those two free enzymes (e.g., the maximum improvement is nearly fourfold). After further optimization by strain and bioprocess engineering, the final valinomycin titer maximally reaches about 2800 µg/L, which is 73 times higher than the initial titer of 38 µg/L. We expect that stapling NRPS enzymes will be a promising catalytic strategy for high-level biosynthesis of NRP natural products.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Valinomycin/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Biosynthetic Pathways , Peptide Synthases/genetics , Peptide Synthases/metabolism , Peptides/metabolism
13.
Metab Eng Commun ; 16: e00217, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36578475

ABSTRACT

Fatty acid-derived products such as alkanes, fatty aldehydes, and fatty alcohols have many applications in the chemical industry. These products are predominately produced from fossil resources, but their production processes are often not environmentally friendly. While microbes like Escherichia coli have been engineered to convert fatty acids to corresponding products, the design and optimization of metabolic pathways in cells for high productivity is challenging due to low mass transfer, heavy metabolic burden, and intermediate/product toxicity. Here, we describe an E. coli-based cell-free protein synthesis (CFPS) platform for in vitro conversion of long-chain fatty acids to value-added chemicals with product selectivity, which can also avoid the above issues when using microbial production systems. We achieve the selective biotransformation by cell-free expression of different enzymes and the use of different conditions (e.g., light and heating) to drive the biocatalysis toward different final products. Specifically, in response to blue light, cell-free expressed fatty acid photodecarboxylase (CvFAP, a photoenzyme) was able to convert fatty acids to alkanes with approximately 90% conversion. When the expressed enzyme was switched to carboxylic acid reductase (CAR), fatty acids were reduced to corresponding fatty aldehydes, which, however, could be further reduced to fatty alcohols by endogenous reductases in the cell-free system. By using a thermostable CAR and a heating treatment, the endogenous reductases were deactivated and fatty aldehydes could be selectively accumulated (>97% in the product mixture) without over-reduction to alcohols. Overall, our cell-free platform provides a new strategy to convert fatty acids to valuable chemicals with notable properties of operation flexibility, reaction controllability, and product selectivity.

14.
Synth Syst Biotechnol ; 7(2): 775-783, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35387232

ABSTRACT

Cell-free system has emerged as a powerful platform with a wide range of in vitro applications and recently has contributed to express metabolic pathways for biosynthesis. Here we report in vitro construction of a native biosynthetic pathway for L-4-nitrotryptophan (L-4-nitro-Trp) synthesis using an Escherichia coli-based cell-free protein synthesis (CFPS) system. Naturally, a nitric oxide (NO) synthase (TxtD) and a cytochrome P450 enzyme (TxtE) are responsible for synthesizing L-4-nitro-Trp, which serves as one substrate for the biosynthesis of a nonribosomal peptide herbicide thaxtomin A. Recombinant coexpression of TxtD and TxtE in a heterologous host like E. coli for L-4-nitro-Trp production has not been achieved so far due to the poor or insoluble expression of TxtD. Using CFPS, TxtD and TxtE were successfully expressed in vitro, enabling the formation of L-4-nitro-Trp. After optimization, the cell-free system was able to synthesize approximately 360 µM L-4-nitro-Trp within 16 h. Overall, this work expands the application scope of CFPS for study and synthesis of nitro-containing compounds, which are important building blocks widely used in pharmaceuticals, agrochemicals, and industrial chemicals.

15.
Curr Opin Microbiol ; 67: 102142, 2022 06.
Article in English | MEDLINE | ID: mdl-35259662

ABSTRACT

Natural products have complex chemical structures and exhibit diverse bioactivities. To harness these high-value natural compounds, robust approaches are required for their rapid and sustainable production. Recently, cell-free systems as one promising solution have been applied to produce natural products by reconstitution of their entire biosynthetic pathways in vitro. Here, we highlight recent advances in cell-free biosynthesis of natural products and discuss future challenges and opportunities. We envision that cell-free technology holds tremendous potential for natural product research such as high-throughput screening of peptide-based natural product analogs/variants, expression of toxic metabolic pathways, characterization of enzyme functions, and activation of silent biosynthetic gene clusters.


Subject(s)
Biological Products , Biological Products/chemistry , Biosynthetic Pathways , Cell-Free System/metabolism , Metabolic Networks and Pathways , Multigene Family
16.
Nucleic Acids Res ; 50(5): 2973-2985, 2022 03 21.
Article in English | MEDLINE | ID: mdl-35191490

ABSTRACT

Serine integrases are emerging as one of the most powerful biological tools for synthetic biology. They have been widely used across genome engineering and genetic circuit design. However, developing serine integrase-based tools for directly/precisely manipulating synthetic biobricks is still missing. Here, we report SYMBIOSIS, a versatile method that can robustly manipulate DNA parts in vivo and in vitro. First, we propose a 'keys match locks' model to demonstrate that three orthogonal serine integrases are able to irreversibly and stably switch on seven synthetic biobricks with high accuracy in vivo. Then, we demonstrate that purified integrases can facilitate the assembly of 'donor' and 'acceptor' plasmids in vitro to construct composite plasmids. Finally, we use SYMBIOSIS to assemble different chromoprotein genes and create novel colored Escherichia coli. We anticipate that our SYMBIOSIS strategy will accelerate synthetic biobrick manipulation, genetic circuit design and multiple plasmid assembly for synthetic biology with broad potential applications.


Subject(s)
Integrases , Serine , Synthetic Biology/methods , Escherichia coli/genetics , Integrases/genetics , Plasmids/genetics , Serine/genetics
17.
ACS Synth Biol ; 11(2): 570-578, 2022 02 18.
Article in English | MEDLINE | ID: mdl-35129330

ABSTRACT

Streptomyces-based cell-free expression systems have been developed to meet the demand for synthetic biology applications. However, protein yields from the previous Streptomyces systems are relatively low, and there is a serious limitation of available genetic tools such as plasmids for gene (co)expression. Here, we sought to expand the plasmid toolkit with a focus on the enhancement of protein production. By screening native promoters and ribosome binding sites, we were able to construct a panel of plasmids with different abilities for protein synthesis, which covered a nearly 3-fold range of protein yields. Using the most efficient plasmid, the protein yield reached up to a maximum value of 515.7 ± 25.3 µg/mL. With the plasmid toolkit, we anticipate that our Streptomyces cell-free system will offer great opportunities for cell-free synthetic biology applications such as in vitro biosynthesis of valuable natural products when cell-based systems remain difficult or not amenable.


Subject(s)
Streptomyces , Cell-Free System/metabolism , Plasmids/genetics , Protein Biosynthesis/genetics , Streptomyces/genetics , Streptomyces/metabolism , Synthetic Biology
18.
Methods Mol Biol ; 2433: 89-103, 2022.
Article in English | MEDLINE | ID: mdl-34985739

ABSTRACT

With the rapid development of cell-free biotechnology, more and more cell-free protein synthesis (CFPS) systems have been established and optimized for protein expression in vitro. Here, we aim to improve the productivity of a newly developed Streptomyces-based CFPS system. Protein translation in CFPS systems depends on the entire endogenous translation system from cell lysates. However, lysates might lack such translation-related elements, limiting the efficiency of protein translation and therefore the productivity of CFPS systems. To address this limitation, we sought to add protein translation related factors to CFPS reactions. By doing this, the protein yield of EGFP was significantly improved up to approximately 400 µg/mL. In this chapter, we mainly describe the preparation of Streptomyces cell extracts, expression and purification of nine translation related factors, and optimization of the Streptomyces-based CFPS system for enhanced protein expression.


Subject(s)
Streptomyces , Biotechnology , Cell-Free System/metabolism , Protein Biosynthesis , Proteomics , Streptomyces/genetics
19.
ACS Bio Med Chem Au ; 2(2): 109-119, 2022 Apr 20.
Article in English | MEDLINE | ID: mdl-37101745

ABSTRACT

HemN is a radical S-adenosylmethionine (SAM) enzyme that catalyzes the anaerobic oxidative decarboxylation of coproporphyrinogen III to produce protoporphyrinogen IX, a key intermediate in heme biosynthesis. Proteins homologous to HemN (HemN-like proteins) are widespread in both prokaryotes and eukaryotes. Although these proteins are in most cases annotated as anaerobic coproporphyrinogen III oxidases (CPOs) in the public database, many of them are actually not CPOs but have diverse functions such as methyltransferases, cyclopropanases, heme chaperones, to name a few. This Perspective discusses the recent advances in the understanding of HemN-like proteins, and particular focus is placed on the diverse chemistries and functions of this growing protein family.

20.
Front Bioeng Biotechnol ; 9: 730663, 2021.
Article in English | MEDLINE | ID: mdl-34395411

ABSTRACT

Cell-free systems have been used to synthesize chemicals by reconstitution of in vitro expressed enzymes. However, coexpression of multiple enzymes to reconstitute long enzymatic pathways is often problematic due to resource limitation/competition (e.g., energy) in the one-pot cell-free reactions. To address this limitation, here we aim to design a modular, cell-free platform to construct long biosynthetic pathways for tunable synthesis of value-added aromatic compounds, using (S)-1-phenyl-1,2-ethanediol ((S)-PED) and 2-phenylethanol (2-PE) as models. Initially, all enzymes involved in the biosynthetic pathways were individually expressed by an E. coli-based cell-free protein synthesis (CFPS) system and their catalytic activities were confirmed. Then, three sets of enzymes were coexpressed in three cell-free modules and each with the ability to complete a partial pathway. Finally, the full biosynthetic pathways were reconstituted by mixing two related modules to synthesize (S)-PED and 2-PE, respectively. After optimization, the final conversion rates for (S)-PED and 2-PE reached 100 and 82.5%, respectively, based on the starting substrate of l-phenylalanine. We anticipate that the modular cell-free approach will make a possible efficient and high-yielding biosynthesis of value-added chemicals.

SELECTION OF CITATIONS
SEARCH DETAIL
...